If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.12=5t^2
We move all terms to the left:
0.12-(5t^2)=0
a = -5; b = 0; c = +0.12;
Δ = b2-4ac
Δ = 02-4·(-5)·0.12
Δ = 2.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{2.4}}{2*-5}=\frac{0-\sqrt{2.4}}{-10} =-\frac{\sqrt{}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{2.4}}{2*-5}=\frac{0+\sqrt{2.4}}{-10} =\frac{\sqrt{}}{-10} $
| 8x+x+7x=15+x | | 5(x-3)+7(x+2)=11 | | x+6/8=4 | | 6b+4=2b-12 | | 2x/7+4=7 | | x/2-5=6/3 | | x-54=3x | | x+(x/2)=42 | | 21x+1=34 | | x+(x÷2)=42 | | 3=6x-3=9 | | 6y+8=68 | | 3x2+5√5x-10=0 | | p-10=-2 | | 7x-4=7x | | 6x+10=8x+4 | | 6x+9=x+49 | | -5+5k=40 | | 6(x-3)=3(x+12) | | 3(x-10)=x+4 | | 7x+3=45,4²+x. | | 3(-10)=x+4 | | 10(x+5)=90 | | 5xx3=15 | | 5x•3=15 | | 3s/7=24 | | 4h/6=36 | | 2z/13=18/13,z | | Y-1/4=1/3,y | | 4x-3=9,x | | 1.5=y/1.3,y | | |6x-4|=4x-3 |